a brief tour of Mac's Abacus Basic supplementary MATH curriculum

Count	OUR BEA DS	Supply
Side	HOLD THEIR PLA CE	Side
Row		

FOUR of the 16 PRELIMINARY EXERCISES to GAIN FAMILIARITY with MAC's ABACUS

For the first half of the W orkbook, EACH ROW is a SEPA RA TE PROBLEM, which allows for important mathematical comparisons.
Here: We Start with 1. One more makes 2, Compare 2's. One more makes 3. We Make 2 again. Make 3, Compare 3's, Confirm 2. Besides Learning to Count, the ABOVE LESSON PROBLEMS demonstrate CONSISTENCY: [that 2 is always 2 and that 3 is always 3]

USING PLA YING CARDS to INTRODUCE the DIGITS that correspond with OBJ ECT COUNTS 1 thru 10 Bead Lengths in Successive Rows easily reveal these Numerical Sequences as Progressions

A SSOCIATING COUNTS with YOUR FINGERS - Everybody learns to do this!

A PRACTICAL USE for COUNTS
COUNTING PARTS needed to BUILD a KIT

A DDITION: USING the " + " and " =" OPERA TORS to COMBINE GROUPS

SUBTRACTION: PRESENTED as REMOVING OBJECTS from a prior Addition Lesson

STACKING RULER PIECES TOGETHER Various LENGTH Combinations that Stack up to 6

COUNTS AS HEIGHTS
The apparent HEIGHTS are IN PROPORTION to their VALUE.

INTRODUCING TOKENS to represent SPECIFIC QUA NTITIES This TOKEN is worth 2 Basketballs

ZERO IS REPRESENTED BY AN ABSENT BEAD Two Problems together demonstrate ZERO is ALSO CONSISTENT

COUNTS AS LENGTHS of STICKS
The apparent LENGTHS are IN PROPORTION to their VALUE

COMPARING COUNTS OF TIME (Hours) Proves the EQUIVALENCE of DIAL and DIGITAL Clocks

TOKENS can represent both VA RIOUS OBJ ECTS and VA RIOUS QUANTITIES (it's the "Rule of the Game")

Even OTHER OBJECTS can be TOKENS The NICKEL is a Token for 5 PENNIES

The DECIMAL SYSTEM assigns "PLACE VALUE" to Digits, so we can easily REPRESENT COUNTS PAST 10

TW O WAYS TO REPRESENT 10 in MAC's ABACUS

COUNTING PAST 10 by using the CARRY in the DECIMAL SYSTEM

Let EACH BEAD in Row 2 be a TOKEN for ALL 10 BEA DS in Row1. Then we can COUNT PAST 10 on MAC's ABACUS

MAC'S ABACUS works the same as the DECIMAL SYSTEM You can TRADE the 10 Beads for 1 Bead in Row 2 (a "Carry")

COMBINING $10+10=20$ as in the DECIMAL SYSTEM

SPLITTING MAC's ABACUS into TW O ABACI, Each capable of COUNTING TO 100 (note the Row Assignments) GAME: Two can Roll Dice until one gets to 100

EACH BEAD in Row 3 is a TOKEN for ALL 10 BEADS in Row 2, so we can COUNT PAST 100 on MAC's ABACUS

Top Problem has no CARRY but Bottom one does

EACH BEAD in Row 4 is a TOKEN for ALL 10 BEADS in Row 3, so we can COUNT PAST 1000 on MAC's ABACUS

DECIMAL ADDITION and SUBTRACTION, COUNTING and USING MONEY

COUNTING COINS on MAC's ABACUS
The DOTS Separate DOLLARS from CENTS

INTRODUCING the \$1, \$5, \$10 and \$20 BILLS on MAC's ABACUS

COUNTING PILES of BILLS and COINS on MAC's ABACUS

DECIMAL SUBTRACTION of THREE- DIGIT Numbers (cloud shows three alternate sequences)

MONEY SUBTRACTION is Used to MAKE CHANGE
in a Purchase

MULTIPLE PURCHA SES can be made as long as you have the Money!

There are probably many COIN COMBINATIONS that A DD UP to $\$ 1.00$

COUNTING BILLS and COINS TOGETHER on MAC's ABACUS

DECIMAL SUBTRACTION of TW O PROBLEMS on a SPLIT ABACUS (Bottom Problem has a "BORROW")

DECIMAL SUBTRACTION of FOUR- DIGIT Numbers (cloud shows this sequence, starting from the right)

DEMONSTRATING the EQUIVALENCE of MAC'S ABACUS and the DECIMAL SYSTEM

